Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
JCO Precis Oncol ; 8: e2300654, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547422

RESUMO

Clinical genomic testing of patient germline, tumor tissue, or plasma cell-free DNA can enable a personalized approach to cancer management and treatment. In prostate cancer (PCa), broad genotyping tests are now widely used to identify germline and/or somatic alterations in BRCA2 and other DNA damage repair genes. Alterations in these genes can confer cancer sensitivity to poly (ADP-ribose) polymerase inhibitors, are linked with poor prognosis, and can have potential hereditary cancer implications for family members. However, there is huge variability in genomic tests and reporting standards, meaning that for successful implementation of testing in clinical practice, end users must carefully select the most appropriate test for a given patient and critically interpret the results. In this white paper, we outline key pre- and post-test considerations for choosing a genomic test and evaluating reported variants, specifically for patients with advanced PCa. Test choice must be based on clinical context and disease state, availability and suitability of tumor tissue, and the genes and regions that are covered by the test. We describe strategies to recognize false positives or negatives in test results, including frameworks to assess low tumor fraction, subclonal alterations, clonal hematopoiesis, and pathogenic versus nonpathogenic variants. We assume that improved understanding among health care professionals and researchers of the nuances associated with genomic testing will ultimately lead to optimal patient care and clinical decision making.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Genes BRCA2 , Genômica
2.
Nat Commun ; 15(1): 1828, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418825

RESUMO

No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Prognóstico , Estudos Prospectivos , Bancos de Espécimes Biológicos , Biomarcadores Tumorais/genética , Biópsia Líquida , Mutação
3.
Nat Cancer ; 5(1): 114-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177459

RESUMO

De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases. Additional complexity was driven by polyclonal metastatic seeding from phylogenetically related primary populations. When simulating clinical practice relying on a single tissue region, genomic heterogeneity plus variable tumor fraction across samples caused inaccurate genotyping of dominant disease; however, pooling extracted DNA from multiple biopsy cores before sequencing can rescue misassigned somatic genotypes. Our results define the relationship between synchronous treatment-sensitive primary and metastatic lesions in men with de novo metastatic prostate cancer and provide a framework for implementing genomics-guided patient management.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Genótipo , Neoplasias da Próstata/genética , Próstata/patologia , Biópsia
4.
Br J Cancer ; 130(1): 53-62, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37980367

RESUMO

BACKGROUND: CC-115, a dual mTORC1/2 and DNA-PK inhibitor, has promising antitumour activity when combined with androgen receptor (AR) inhibition in pre-clinical models. METHODS: Phase 1b multicentre trial evaluating enzalutamide with escalating doses of CC-115 in AR inhibitor-naive mCRPC patients (n = 41). Primary endpoints were safety and RP2D. Secondary endpoints included PSA response, time-to-PSA progression, and radiographic progression. RESULTS: Common adverse effects included rash (31.7% Grades 1-2 (Gr); 31.7% Gr 3), pruritis (43.9% Gr 1-2), diarrhoea (37% Gr 1-2), and hypertension (17% Gr 1-2; 9.8% Gr 3). CC-115 RP2D was 5 mg twice a day. In 40 evaluable patients, 80% achieved ≥50% reduction in PSA (PSA50), and 58% achieved ≥90% reduction in PSA (PSA90) by 12 weeks. Median time-to-PSA progression was 14.7 months and median rPFS was 22.1 months. Stratification by PI3K alterations demonstrated a non-statistically significant trend towards improved PSA50 response (PSA50 of 94% vs. 67%, p = 0.08). Exploratory pre-clinical analysis suggested CC-115 inhibited mTOR pathway strongly, but may be insufficient to inhibit DNA-PK at RP2D. CONCLUSIONS: The combination of enzalutamide and CC-115 was well tolerated. A non-statistically significant trend towards improved PSA response was observed in patients harbouring PI3K pathway alterations, suggesting potential predictive biomarkers of response to a PI3K/AKT/mTOR pathway inhibitor. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02833883.


Assuntos
Benzamidas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Pirazinas , Triazóis , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Antígeno Prostático Específico/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatidilinositol 3-Quinases , Nitrilas/uso terapêutico , DNA/uso terapêutico
5.
J Natl Cancer Inst ; 116(1): 115-126, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37676819

RESUMO

BACKGROUND: The phase 3 CALGB 90203 (Alliance) trial evaluated neoadjuvant chemohormonal therapy for high-risk localized prostate cancer before radical prostatectomy. We dissected the molecular features of post-treated tumors with long-term clinical outcomes to explore mechanisms of response and resistance to chemohormonal therapy. METHODS: We evaluated 471 radical prostatectomy tumors, including 294 samples from 166 patients treated with 6 cycles of docetaxel plus androgen deprivation therapy before radical prostatectomy and 177 samples from 97 patients in the control arm (radical prostatectomy alone). Targeted DNA sequencing and RNA expression of tumor foci and adjacent noncancer regions were analyzed in conjunction with pathologic changes and clinical outcomes. RESULTS: Tumor fraction estimated from DNA sequencing was significantly lower in post-treated tumor tissues after chemohormonal therapy compared with controls. Higher tumor fraction after chemohormonal therapy was associated with aggressive pathologic features and poor outcomes, including prostate-specific antigen-progression-free survival. SPOP alterations were infrequently detected after chemohormonal therapy, while TP53 alterations were enriched and associated with shorter overall survival. Residual tumor fraction after chemohormonal therapy was linked to higher expression of androgen receptor-regulated genes, cell cycle genes, and neuroendocrine genes, suggesting persistent populations of active prostate cancer cells. Supervised clustering of post-treated high-tumor-fraction tissues identified a group of patients with elevated cell cycle-related gene expression and poor clinical outcomes. CONCLUSIONS: Distinct recurrent prostate cancer genomic and transcriptomic features are observed after exposure to docetaxel and androgen deprivation therapy. Tumor fraction assessed by DNA sequencing quantifies pathologic response and could be a useful trial endpoint or prognostic biomarker. TP53 alterations and high cell cycle transcriptomic activity are linked to aggressive residual disease, despite potent chemohormonal therapy.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Terapia Neoadjuvante , Docetaxel , Antagonistas de Androgênios/uso terapêutico , Androgênios/uso terapêutico , Resultado do Tratamento , Recidiva Local de Neoplasia/cirurgia , Antígeno Prostático Específico , Prostatectomia , Proteínas Nucleares , Proteínas Repressoras
7.
Eur Urol Oncol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37714762

RESUMO

CONTEXT: Prostate cancer is a molecularly heterogeneous disease that is amenable to diagnostic testing to identify patients potentially eligible for personalised treatments inform familial risk and provide relevant information about potential prognosis. Several guidelines support the integration of genomic testing in a shared decision-making framework so that both health care professionals (HCPs) and patients are involved in determining the best treatment approach. OBJECTIVE: To review current guidelines on molecular diagnostic testing for homologous recombination repair (HRR) gene alterations in patients with metastatic prostate cancer, with the aim of providing practical considerations for effective guideline implementation and establishment of an appropriate pathway for molecular diagnostic testing. EVIDENCE ACQUISITION: We undertook a nonsystematic narrative review of the literature using PubMed to identify current guidelines and recommendations on molecular diagnostic testing for BRCA and/or homologous recombination repair gene alterations (HRRm) in patients with prostate cancer. In addition, selected articles that included BRCA/HRRm testing in clinical trials in metastatic castration-resistant prostate cancer and real-world evidence were also evaluated. Websites for relevant societies were reviewed for molecular diagnostic guidelines not published on PubMed. EVIDENCE SYNTHESIS: Our review of guidelines published by several international societies that include molecular testing in prostate cancer identified variations in molecular testing approaches. The review of testing approaches used in clinical trials and real-world settings also highlighted several aspects that require improvement. Therefore, we compiled practical guidance for establishing an appropriate BRCA/HRR mutation testing pathway. CONCLUSIONS: While there are several challenges to molecular testing and interpretation of test results that require enhancement, a multidisciplinary team approach will empower HCPs and their institutions to improve on or initiate their own molecular testing pathways. This in turn will lead to improvements in management strategies for patients with metastatic prostate cancer, for whom better treatment outcomes is a significant unmet need. PATIENT SUMMARY: Establishing a molecular testing pathway in clinical practice for patients with metastatic castration-resistant prostate cancer will lead to fairer and more equal access to personalised treatments. This should lead to better outcomes, particularly for patients whose disease has spread to other areas of the body.

9.
Cancer Res ; 83(16): 2763-2774, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37289025

RESUMO

Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE: Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.


Assuntos
Tumores Neuroendócrinos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Epigenômica , Antagonistas de Androgênios/uso terapêutico , Androgênios , Genômica , Tumores Neuroendócrinos/genética
10.
Am Soc Clin Oncol Educ Book ; 43: e390384, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37207301

RESUMO

Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Antagonistas de Androgênios/uso terapêutico , Reparo do DNA/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Testes Genéticos
11.
iScience ; 26(5): 106525, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250326

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor central in the regulation of key cellular processes including cell metabolism, tissue differentiation, and regulation of the immune system. PPARγ is required for normal differentiation of the urothelium and is thought to be an essential driver of the luminal subtype of bladder cancer. However, the molecular components that regulate PPARG gene expression in bladder cancer remain unclear. Here, we developed an endogenous PPARG reporter system in luminal bladder cancer cells and performed genome-wide CRISPR knockout screening to identify bona fide regulators of PPARG gene expression. Functional validation of the dataset confirmed GATA3, SPT6, and the cohesin complex components SMC1A, and RAD21, as permissive upstream positive regulators of PPARG gene expression in luminal bladder cancer. In summary, this work provides a resource and biological insights to aid our understanding of PPARG regulation in bladder cancer.

12.
NPJ Precis Oncol ; 7(1): 27, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914848

RESUMO

Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency.

13.
Clin Cancer Res ; 29(15): 2835-2844, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996325

RESUMO

PURPOSE: Androgen receptor pathway inhibitors (ARPI) are standard of care for treatment-naïve metastatic castration-resistant prostate cancer (mCRPC), but rapid resistance is common. Early identification of resistance will improve management strategies. We investigated whether changes in circulating tumor DNA (ctDNA) fraction during ARPI treatment are linked with mCRPC clinical outcomes. EXPERIMENTAL DESIGN: Plasma cell-free DNA was collected from 81 patients with mCRPC at baseline and after 4 weeks of first-line ARPI treatment during two prospective multicenter observational studies (NCT02426333; NCT02471469). ctDNA fraction was calculated from somatic mutations in targeted sequencing and genome copy-number profiles. Samples were classified into detected versus undetected ctDNA. Outcome measurements were progression-free survival (PFS) and overall survival (OS). Nondurable treatment response was defined as PFS ≤6 months. RESULTS: ctDNA was detected in 48/81 (59%) baseline and 29/81 (36%) 4-week samples. ctDNA fraction for samples with detected ctDNA was lower at 4 weeks versus baseline (median 5.0% versus 14.5%, P = 0.017). PFS and OS were shortest for patients with persistent ctDNA at 4 weeks (univariate HR, 4.79; 95% CI, 2.62-8.77 and univariate HR, 5.49; 95% CI, 2.76-10.91, respectively), independent of clinical prognostic factors. For patients exhibiting change from detected to undetected ctDNA by 4 weeks, there was no significant PFS difference versus patients with baseline undetected ctDNA. ctDNA change had a positive predictive value of 88% and negative predictive value of 92% for identifying nondurable responses. CONCLUSIONS: Early changes in ctDNA fraction are strongly linked to duration of first-line ARPI treatment benefit and survival in mCRPC and may inform early therapy switches or treatment intensification. See related commentary by Sartor, p. 2745.


Assuntos
DNA Tumoral Circulante , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Estudos Prospectivos , Nitrilas/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico
15.
Front Oncol ; 12: 1054497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439451

RESUMO

Plasma circulating tumor DNA (ctDNA) represents short fragments of tumor-derived DNA released into the bloodstream primarily from cancer cells undergoing apoptosis. In metastatic castration-resistant prostate cancer (mCRPC), characterizing genomic alterations in ctDNA identifies mutations, copy number alterations, and structural rearrangements with predictive and prognostic biomarker utility. These associations with clinical outcomes have resulted in ctDNA increasingly incorporated into routine clinical care. In this review, we summarize current and emerging applications for ctDNA analysis in metastatic prostate cancer, including outcome prediction, treatment selection, and characterization of treatment resistance. We also discuss potential pitfalls with interpreting ctDNA findings, namely false negatives arising from low tumor content and optimal assay design, including correction for clonal hematopoiesis of indeterminate potential and germline variants. Understanding the influence of these limitations on interpretation of ctDNA results is necessary to overcome barriers to clinical implementation. Nevertheless, as assay availability and technology continue to improve, recognizing both opportunities and shortcomings of ctDNA analysis will retain relevance with informing the implementation of precision-oncology initiatives for metastatic prostate cancer.

16.
Nat Commun ; 13(1): 6467, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309516

RESUMO

Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively. We show that the cell-free DNA methylome can capture variations beyond the tumor. A global hypermethylation in metastatic samples is observed, coupled with hypomethylation in the pericentromeric regions. Hypermethylation at the promoter of a glucocorticoid receptor gene NR3C1 is associated with a decreased immune signature. The cell-free DNA methylome is reflective of clinical outcomes and can distinguish different disease types with 0.989 prediction accuracy. Finally, we show the ability of predicting copy number alterations from the data, providing opportunities for joint genetic and epigenetic analysis on limited biological samples.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Próstata , Masculino , Humanos , Epigenoma , Ácidos Nucleicos Livres/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Metilação de DNA/genética
17.
Oncologist ; 27(11): e912-e915, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36166584

RESUMO

BACKGROUND: Primary mediastinal nonseminoma germ cell tumors (PMNSGCT) are a subgroup of nonseminoma germ cell tumors (GCT) with poor prognosis. In this study, PMNSGCT-specific genomic landscape was analyzed and correlated with clinical outcomes. METHODS: DNA was extracted and sequenced from 28 archival tumor tissue of patients with mediastinal GCT (3 seminoma and 25 nonseminoma). Overall survival (OS) and association with gene alterations were estimated using the Kaplan-Meier and univariate Cox regression methods. RESULTS: Three patients (11%) had a karyotype XXY, 17/28 (61%) tumor samples presented chromosome 12p amplification. Somatic mutations were detected in 19/28 (68%) samples. The most frequently mutated genes were: TP53 (13/28; 46%), KIT (5/28; 18%), and KRAS (5/28; 18%). Deleterious TP53 alterations were associated with significantly reduced overall survival (HR: 7.16; P = .012). CONCLUSIONS: TP53 alterations are common in PMNSGCT and are associated with reduced overall survival, potentially underlying the poor sensitivity to chemotherapy observed in these patients.


Assuntos
Neoplasias do Mediastino , Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Masculino , Humanos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Seminoma/patologia , Neoplasias do Mediastino/genética , Neoplasias do Mediastino/patologia , Prognóstico , Proteína Supressora de Tumor p53/genética
18.
Nature ; 608(7921): 199-208, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859180

RESUMO

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical cancer genotyping and longitudinal disease monitoring1. However, owing to past emphasis on targeted and low-resolution profiling approaches, our understanding of the distinct populations that comprise bulk ctDNA is incomplete2-12. Here we perform deep whole-genome sequencing of serial plasma and synchronous metastases in patients with aggressive prostate cancer. We comprehensively assess all classes of genomic alterations and show that ctDNA contains multiple dominant populations, the evolutionary histories of which frequently indicate whole-genome doubling and shifts in mutational processes. Although tissue and ctDNA showed concordant clonally expanded cancer driver alterations, most individual metastases contributed only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal population restructuring converging solely on AR augmentation as the dominant genomic driver of acquired treatment resistance. Finally, we leverage nucleosome footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, including treatment-induced changes in AR transcription factor signalling activity. Our results provide insights into cancer biology and show that liquid biopsy can be used as a tool for comprehensive multi-omic discovery.


Assuntos
DNA Tumoral Circulante , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos/farmacologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Células Clonais/metabolismo , Células Clonais/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Biópsia Líquida/métodos , Masculino , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Nucleossomos/genética , Nucleossomos/metabolismo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Neoplásico/análise , RNA Neoplásico/genética , Receptores Androgênicos/metabolismo
19.
NAR Cancer ; 4(2): zcac016, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664542

RESUMO

Sequencing of cell-free DNA (cfDNA) in cancer patients' plasma offers a minimally-invasive solution to detect tumor cell genomic alterations to aid real-time clinical decision-making. The reliability of copy number detection decreases at lower cfDNA tumor fractions, limiting utility at earlier stages of the disease. To test a novel strategy for detection of allelic imbalance, we developed a prostate cancer bespoke assay, PCF_SELECT, that includes an innovative sequencing panel covering ∼25 000 high minor allele frequency SNPs and tailored analytical solutions to enable allele-informed evaluation. First, we assessed it on plasma samples from 50 advanced prostate cancer patients. We then confirmed improved detection of genomic alterations in samples with <10% tumor fractions when compared against an independent assay. Finally, we applied PCF_SELECT to serial plasma samples intensively collected from three patients previously characterized as harboring alterations involving DNA repair genes and consequently offered PARP inhibition. We identified more extensive pan-genome allelic imbalance than previously recognized in prostate cancer. We confirmed high sensitivity detection of BRCA2 allelic imbalance with decreasing tumor fractions resultant from treatment and identified complex ATM genomic states that may be incongruent with protein losses. Overall, we present a framework for sensitive detection of allele-specific copy number changes in cfDNA.

20.
Prostate ; 82 Suppl 1: S73-S85, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657158

RESUMO

Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.


Assuntos
Neoplasias da Próstata , Biomarcadores Tumorais/genética , Tomada de Decisão Clínica , Genômica , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...